Anorexia Nervosa

History of Presenting Illness
(diagnostic criteria from DSM IV)
- History of weight loss (or in children, lack of weight gain)
- Weight loss is Self-induced through avoidance
- Intrusive dread of fatness
- Amenorrhea (or in men, loss of sexual interest)
- Excessive exercise
- Use of appetite suppressants
- History of eating disorders in family
- **BUT NOT BINGE/PURGE:**
 - NO RECURRENT EPISODES OF OVEREATING
 - NO “CRAVING” i.e. no compulsion to eat and then follow it with compensatory behaviour eg. vomiting

Differential Diagnoses (DDx)
- Eating disorder (!)
- Stress-related autophagy
- Drugs
- Cancer
- Pregnancy
- Intestinal parasite
- Psychosocial ramifications of puberty
- Malabsorption disease (eg, coeliac)
- Hyperthyroidism
- Depression

Findings on History
- No necessary previous illness, but may have previous GIT disorder
- History of eating disorder in family
- Gradual decline of school/work performance, missing days etc.

Findings on Examination (Ex)
- Pale, thin, gaunt, sunken face/eyes (BMI below 17.5)
- Sullen/depressed
- Dark circles under eyes (~dehydration, hypovolumia)
- Chapped lips
- Flaking skin
- Brittle hair
- Halitosis (due to ketone bodies in blood stream)

Tests and Investigations
Blood Count: looking for metabolic abnormalities consistent with malnutrition
- Low haemoglobin (N = 1.15-1.6 g/L) due to iron deficiency
- Low WBC (N = 4 to 11x10^3 per mm^3) due to malnutrition
- Low plasma glucose (N= 4 to 10 mmol/L; below 2.8 = coma) (or 7 - 11 mg/L)

Postural Hypotension: marked difference between standing and sitting/lying blood pressure; normal difference = 12

Urinalysis to eliminate pregnancy: **Expected Negative**

Stool Sample to eliminate intestinal infection/infestation **Expected Negative**

ASK: do you think you are thin?
Anorexics will amaze you with the poverty of their insight into their own condition.

ASK THE FAMILY: how are the other kids?
Often there are several eating disorders in the same family- perhaps stemming from the same risk factor

OBESITY/THINNESS most strongly correlated with MOTHERS WEIGHT

Look for signs of
- ANAEMIA
- DEHYDRATION
- MALNUTRITION
- KETOACIDOSIS

put together by Alex Yartsev: Sorry if i used your images or data and forgot to reference you. Tell me who you are.
aleksei.igorevich@gmail.com
By GP:
- referral to psychiatrist (specialist in eating disorders)
- does the pt require resuscitation, rehydration, nutrient replacement therapy?

By Specialist: DEFINITIVE TREATMENT:
- Nutritional Rehabilitation:
 - Dietician will work with pt. to devise a feeding regime to gain minimum healthy weight
 - 1st take detailed nutritional history and ask about weight-loss behaviours
 - INFORM about dangers of over/under eating, excess exercise, starvation metabolism
 - Then when target weight is reached, a maintenance diet is prescribed

HOSPITALISATION may be needed if pt. is emaciated, or there is low compliance, or a family crisis supervenes.
- Psychotherapy: somatic focus must be combined with cognitive behavioural therapy and supportive psychotherapy. Aim is to:
 - understand the personal significance of weight loss;
 - help deal with weight gain;
 - to have her accept and become attuned to her body;
 - to improve her self esteem;
 - to assist her to reintegrate home, school and peer group.

Treatment must continue for a long period of time even after weight and eating patterns have normalised. Compulsory treatment may be necessary.

Epidemiology
Mainly Women (10:1) – TYPE A PERSONALITY is a risk factor
Prevalent in cultures where food is plentiful
(worldwide prevalence = 0.5%; in America 2.3% in females)
Mortality ~ 10% chance every 10 years
OCDs in >20% of sufferers
Anxiety disorders in 65%
Depression in 68%

Prognosis
The relapse rate is high (50% in the first year and 90% overall),
the death rate is 1% per year with 20% dead by 20 years,
the illness lasts around 5 years on average
Biochemistry of weight loss

Energy intake of the body is balanced by its energy output ("energy balance equation"): thus, increasing output or decreasing input will unbalance the equation and force autophagy (where the body uses stores of energy to satisfy its basic metabolic needs)

Energy intake = food intake in kilojoules or calories
Energy output =
- resting metabolic rate (RMR),
- energy cost of arousal,
- the energy cost of work and activity,
- thermogenesis (heat production)
- shivering,
- non-shivering
- diet-induced thermogenesis. On eating, there is a specific stimulation of the sympathetic nervous system which leads to thermogenesis. Carbohydrate and protein eaten in excess may also stimulate thermogenesis. Fat does not elicit thermogenesis.

Biochemistry of starvation:

1st order of business: BRAIN NEEDS GLUCOSE; primary source is glycogen in the liver
OTHER ORGANS THAT CANT DO WITHOUT GLUCOSE: Testes, Kidney Medulla, Erythrocytes

Blood glucose falls by 2/3rds = COMA eg. in diabetes (all glucose gets bound in cells)

- STEP 1: GLYCOLYSIS: GLYCOGEN is catabolised to release a small amount of glucose for the brain
 LASTS 1 DAY-
 GLUCONEOGENESIS occurs: production of glucose out of raw materials eg glycerol
- STEP 2: LIPOLYSIS occurs: free fatty acids released into bloodstream,
 - to be used in β-oxidation: turn into AcetylCoA molecules, then get used in Krebs Cycle
 - KETONE BODIES are produced from AcetylCoA, which the brain can use instead of glucose
- FAT LASTS 2-3 MONTHS: longer in fat people
- STEP 3: LAST RESORT:
 PROTEOLYSIS in MUSCLES occurs to release amino acids for the Kreb Cycle
 (get deaminated and turned into carbon chain skeletons, then slotted in wherever they fit along the cycle; ammonia is released as result) IF BRAIN IS STARVED permanent loss of frontal lobe matter occurs (!!)

Glucose Homeostasis:

GLUCAGON converts ATP into Cyclic AMP; INSULIN re-converts it into AMP (deactivating it)
Cyclic AMP activates the protein kinases which activate glycogenolysis and deactivate glycogen synthesis
BMI = weight divided by height squared

Healthy range: 18.5 to 25; 30+ is obese, less than 18.5 is underweight, less than 16.5 is emaciated

Biochemistry of Krebs Cycle:

Fuel Use in Cells

- **GLUCOSE**
 - Glucose-6-Phosphate
 - **Glycogen**
 - Glycogen-lysis
 - Glycogen-genesis
 - Glycolysis
 - GLYCOGEN
 - lactic acid with lactate dehydrogenase
 - ANAEROBIC with Lactate Dehydrogenase
 - AMINO ACIDS
 - PYRUVATE
 - **KETONE BODIES**
 - eg. acetoacetate, hydroxybutyrate
 - Lipolysis
 - Fatty Acids
 - β-oxidation of fatty acids into C₂ chunks
 - TRIGLYCERIDES
 - Lipolysis
 - Lipogenesis
 - FREE FATTY ACIDS
 - Acetyl CoA = C₂

Krebs Cycle

- **PRODUCTS:**
 - Coenzyme A (reused)
 - H₂O (reused)
 - CO₂ (exhaled)

USEFUL PRODUCTS:
- Electron and H⁺ carriers
 - eg. NAD, FAD:
 - transport H⁺ ions and electrons into oxidative phosphorylation reaction

RAW MATERIALS:
- ADP, Inorganic Phosphate, Oxygen.

Ketogenesis

Electron Transport Chain:
A sequence of membrane proteins arranged in order of increasing redox potential; operated by NADH and FADH. Electrons move down the redox gradient and the resulting energy is used to pump H⁺ ions out of the inner mitochondrial membrane. Purpose is to build a negative charge inside the membrane and thus attract H⁺ ions back into the mitochondrion. The membrane is impervious to H⁺ except for proton channels; therefore the protons have no choice but to operate the ATPase enzyme.

Oxidative Phosphorylation:
The conversion of ADP and inorganic phosphate into ATP. This is done by Proton-translocating ATPase. This enzyme is activated by the passage of H⁺ ions into the mitochondrion through a proton channel to which the ATPase is linked. 3 H⁺ ions for 1 ATP molecule.
The curved arrows are a shorthand way of showing the reactants and products. For example, in step 3 the NAD$^+$ reacts with isocitrate to produce α-ketoglutarate, CO$_2$, NADH, and H$^+$. The last two then leave the site of the reaction.
Secretion, gland:

- **Saliva (Amylases)**
 - From 3 pairs of salivary glands
- **Lingual Lipase**
 - From surface of tongue
- **Pepsinogen**
 - From “chief cells” in the base of gastric glands in the middle stomach (the “body”)
- **Mucus**
 - To coat the walls of the stomach and protect them from acid/enzyme damage
 - From Goblet cells in the pylorus (distal stomach)
- **Bile**
 - From the liver; stored in gall bladder

Location, action:

- **MOUTH**
 - Mastication by teeth (food becomes a moistened compact bolus)
 - Lubrication by saliva
 - Carbohydrates broken down by amylases
 - Triglycerides broken down by lingual lipase
- **OROPHARYNX**
 - Muscular swallowing action
- **LARYNGOPHARYNX**
 - Muscular swallowing action
- **OESOPHAGUS**
 - Muscular swallowing action
- **STOMACH**
 - Bulk storage of swallowed bolus
 - Mechanical muscular churning of the bolus (peristalsis)
 - Acid secretion (HCl; pH 1.5-2.0) denaturates proteins, deactivates foreign enzymes, breaks down plant cell walls and animal connective tissue, activates pepsin from pepsinogen
 - Pepsin breaks down proteins by attacking peptide bonds
 - Intrinsic Factor facilitates absorption of vitamin B12 in the intestine
 - Overall result is acidic viscous soup-like chyme
- **DUODENUM**
 - About 25 cm of small intestine
 - Mixing of chyme, intestinal juice and digestive secretions of pancreas and liver
 - Intestinal Juice coats the walls of the small intestine and reduce the acidity of the chyme
 - Pancreatic alpha-amylase breaks down starches
 - Proteases break down large protein complexes
 - Peptidases break down proteins into amino acids
 - Nucleases break down nucleic acids
 - Bile emulsifies the lipids in the chyme
 - Pancreatic lipase breaks down complex lipids into fatty acids
- **JEJUNUM**
 - About 250 cm of small intestine
 - Absorption of nutrients
- **ILEUM**
 - About 350 cm of small intestine
 - Some absorption of nutrients
- **PROXIMAL COLON**
 - About 75 cm of total colon, comprising the ascending colon and transverse colon
 - Colonic bacteria generate Vitamin K, Vitamin B5 and Biotin
 - 10% of all GIT absorption occurs in the proximal colon
- **DISTAL COLON**
 - About 75 cm of total colon, comprising the descending colon and sigmoid colon
 - Storage of wastes and reabsorption of water
- **RECTUM**
 - Peristaltic expulsion of wastes

Absorption:

- **Relevant anatomy:**
 - Trace quantities of simple lipids + carbohydrates through the capillaries in the tongue and soft palate
 - Nothing is specifically absorbed except some drugs (eg aspirin) and ethyl alcohol; this is due to the thick mucous coating of the stomach walls
 - Absorption occurs mainly in the JEJUNUM:
 - Peptides
 - Amino acids
 - Fructose
 - Glucose
 - Lipids
 - Water minerals
 - Vitamins
 - The Proximal colon absorbs:
 - Water
 - Vitamin K
 - Biotin
 - Vitamin B5
 - Some bile salts
 - Urobilinogen (product of bacterial metabolism of bilirubin from bile)
 - Toxins (ammonium ions, indole, scatole, and hydrogen sulfide)
Absorption of Nutrients in the Gut: Villous cells ABSORB, Crypt cells SECRETE.

Water:
- can be transported passively (osmosis, which is solute-driven)
- or actively (by water-carrying proteins)

Action of OSMOTIC LAXATIVES:
- eg. mannitol: solute-driven absorption disrupted by insoluble sugar
- therefore great volumes of water don’t get absorbed
- therefore diarrhoea results

Diagram:
- **Small Intestine**
 - Na^+ pump
 - Co-transporter: Transports both Na^+ and Cl^-
 - Na^+ and Cl^- escape through Cl^- channels
 - Na^+ and K^+ ions traffic freely

- **Large Intestine**
 - Na^+ pump
 - 2K+ pump
 - 3Na^+ pump
 - 2K+ and glucose
 - 3Na^+ and glucose

- Duodenum Villi
 - Sodium/Glucose Co-Transporter
 - Glucose
Absorption of:
- Water:
 - driven by solute; lipid bi-layer readily admits water (20% of total)
 - Most water (80%) gets transported by transport proteins AQUAPORINS (passively)
- Gases:
 - Completely passive (by diffusion)

Protein transport is both SATURABLE and INHIBITABLE:
SATURABLE transport: eg. glucose: when there is an end-point for absorption, and then no more.
INHIBITABLE transport can be interrupted by specific blockers
Protein transport usually requires sodium to pump

Behavioural science:
Taking a meaningful nutritional history:
RECORD: time consuming but accurate log of all consumed foods/drinks; depends on compliance.
Most useful if run over longer periods
24 hr RECALL: quick, provides a snapshot of intake- how good is the patients memory?
Diet History: for long-term accustomed food intake, eg. *on average, what do you eat in an average day*?
- may be useless if the pt has poor memory or the diet is highly variable

Food Frequency Questionnaire- accurate but depends on pt motivation, patience, memory and intelligence.

WHICH METHOD TO CHOOSE? Depends:
- want accurate measurements or descriptive assessment?
- Short or long-term?
- Can the pt be relied on to provide an accurate assessment?

Genetics
Obesity and thinness are most closely related to the normal weight of the biological mother

Pharmacology
most commonly non-specific **antidepressants**, either for depressive illness or for obsessive compulsive symptoms which may impede recovery
ALSO perhaps a Sustagen ™ type protein+carbohydrate re-feeding schemata