The Fate of Dietary Lipids

THE TYPICAL LIPOPROTEIN PARTICLE: is of **SPHERICAL SHAPE,** with a **COAT** and a **CORE**

OUTSIDE:
- **Made of** phosphatidyl choline, aka **LEcithIN**
 - This is a glycerol backbone with two fatty acids.
 - Being hydrophilic, the glycerol end of a lecithin molecule faces outwards, and the fatty acids face inwards, thus giving the lipoprotein a roughly spherical shape.
 - **THIS IS A LIPID MONOLAYER** (not bilayer like in cell membranes, because the inside of a lipoprotein is made of hydrophobic lipids)
- **ALSO:** the coat contains **PROTEINS** which give lipoproteins their name. These are responsible for targeting these proteins to specific cells.

INSIDE: the **TRANSPORTED LIPIIDS:**
- **Triglycerides and Cholesterol esters**

EMBEDDED PROTEINS:
- So-called **“Apo-lipoproteins”** because all lipid content has been leached from them.
 - **2 groups:**
 - **EXCHANGEABLE**
 - (can be swapped between two lipoprotein particles)
 - **A1, A2, C2, E**
 - **NON-EXCHANGEABLE**
 - (embedded forever in the lecithin layer)
 - **B48, B100**

~TYPES OF LIPOPROTEINS~

<table>
<thead>
<tr>
<th>Type</th>
<th>Density (g/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest</td>
<td></td>
</tr>
<tr>
<td>Chylomicrons</td>
<td>0.95</td>
</tr>
<tr>
<td>Chylomicon remnants</td>
<td>1.0</td>
</tr>
<tr>
<td>VLDL</td>
<td>1.0</td>
</tr>
<tr>
<td>VLDL remnants</td>
<td>1.05</td>
</tr>
<tr>
<td>LDL</td>
<td>1.1</td>
</tr>
<tr>
<td>HDL</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Smallest

The higher the density, the greater the cholesterol content (cholesterol is the densest of the transported lipids)

Thus, the big chylomicrons are almost completely full of triglycerides and HDL is made completely of cholesterol.

~LIVER~

HDLs: the **GOOD cholesterol**
- ➔ are the **BACKWARD TRANSPORT** of cholesterol esters to the liver;
- **EARLY HDL:** no cholesterol; just a disk of lecithin; and ApoAI is present in the disk; docks with cells which are releasing cholesterol.
- ➔ this causes uptake of cholesterol into the HDL blob. BUT: the cholesterol is immature, i.e., needs to be esterified. This is done by the enzyme *LechithinCholesterolAcylTransferase (LCAT)* which transfers one fatty acid from lecithin into the cholesterol (thus esterifying it) and leaving a *lyso-phosphatidyl-choline remnant* (glycerol backbone with just one fatty acid);
- **THUS THE MATURE HDL IS FORGED**

VLDLs get synthesised and released by the LIVER: used in starvation as a source of energy

LDLs only one apoprotein (B100)
- ➔ bind to surfaces of cells which need cholesterol via LDL receptors
 - (statin drugs usefully promote expression of these)
 - If the apoB100 protein gets oxidised or glycosylated (e.g., in diabetes) it can no longer be recognised by the LDL receptor; needs to be taken care of by the “scavenger” receptor of macrophages; and macrophages then turn into the **FOAM CELLS** of atherosclerosis!