Mechanism of Membranous Glomerulonephritis

IgG subclass 4
- is the culprit
 - the rarest of the circulating IgG subclasses
 - accounts for only 3-6% of total IgG
 - unique in its inability to activate classical complement pathway.

THIS IS IMPORTANT!!
Classical pathway is responsible for preventing immune complex deposition
- C3 binds to the antigen/antibody complexes, then links the complex to the CR1 Receptor on erythrocytes, which then circulate to the liver where the immune complexes are destroyed

IgG is also a LOW AFFINITY antibody
Hence it is able to dissociate pre-GBM, then penetrate the GBM and allegedly re-aggregate afterwards (inside the membrane)

Genetic component:
HLA DR3 = risk factor
Also Cancer, SLE, lead, mercury, gold, penicillamine, hep B/C, and syphilis

Exposure to endogenous or exogenous antigen(s)
In the Heymann mouse model this is a glomerular epithelial glycoprotein called megalin, but it has no equivalent in humans

Induction of low affinity IgG immune response

Antibody + antigen complexes CIRCULATE FREELY

DEPOSITION OF IMMUNE COMPLEXES IN THE GLOMERULAR BASEMENT MEMBRANE

GEN KIDNEY:
low affinity of the IgG4 allows dissociation of the complexes
- thus their FILTRATION through the GBM and fixation in it
- then, re-aggregation? ...PLUS hemodynamic stress eg. tortuous capillaries also increase the likelihood of immune complex deposition) either way...

4 stages:

Stage 1:
Scattered subendothelial deposits (subendothelial meaning behind the GBM, on the urine side of things)

Stage 2:
Large uniform deposits; Spikes of epithelium between them
Foot processes are being destroyed by the membrane attack complex (invoked by complement cascade, the alternative pathway)

Stage 3:
DEPOSITS ENCIRCLED and incorporated into the glomerular basement membrane; this is the famed "membranous transformation"

Stage 4:
Complete absorption of antibody complexes into the now-homogenous, irregular basement membrane.

TUBULAR DAMAGE:

NORMALLY:
Some proteins slip through the GBM
Eg. low mol. weight proteins with neutral charge
The low molecular weight proteins are usually reabsorbed by the proximal tubule

In Membranous Glomerulonephritis:
The poor tubule tries to reabsorb (pinocytose) the extra protein out of the urine and is thus overloaded with it
(vis. histological finding: vacuolisation” of the tubule)

THIS MUCH PROTEIN IS TOXIC:
- Toxic on its own eg. heme
- The act of pumping it depletes ATP
- THUS the tubules atrophy and die
 - then release cytokines thus attract FIBROBLASTS
 - FIBROSIS

Antibody-associated Glomerular Injury

Trapping of soluble circulating Ag-Ab complexes in the glomerulus
Strep Post-infectious, Serum-sickness, Hep C

Injury by Ab reacting in situ within the glomerulus
Anti-GBM or mesangial Ag
Ag planted within the glomerulus (drugs, bugs, DNA)

Site of immune complexes largely determine glomerular response:
- Subendothelial activate complement, acute inflammatory response
- Mesangial mesangiolproliferative response
- Subepithelial induce production of basement membrane material

NORMAL:
The filtering in the GBM is done by
- a size-barrier (i.e. the type IV collagen mesh)
- a charge barrier (i.e. the polyanionic inclusions in the mesh and the nephrin on the podocyte foot processes)

In Membranous Glomerulonephritis:
the defect in membranous glomerulonephritis results mainly from a loss of size selectivity - NEJM 1998