Question 13

Describe the control of alveolar ventilation.

[Click here to toggle visibility of the answers]

College Answer

The most comprehensive answers were those structured as sensor-controller-effector with an 
explanation of each part and how homeostasis was maintained. Insufficient detail was generally 
provided as to how central and peripheral chemoreceptors were stimulated. A description of 
central control was required, rather than listing nuclei or areas.
Many failed to address all three components of a control question and focused primarily on the 
sensors. Many answers were just too brief and did not present enough information to 
demonstrate understanding


This is a question which Nunn's takes twenty pages to answer, so condensing it requires a bit of preparation. Ideally, the exam candidate will have a prefabricated answer stored in their cheek pouch, ready to regurgitate.  Tabulated answers are almost always the best, and so here a series of tables  which hopefully "present enough information to demonstrate understanding".

Sensor Organs involved in the Control of Respiratory Function
Sensor Stimulus Afferent nerve

Carotid body glomus
(Type I cells) - sited at the bifurcation of the common carotid

  • PaO2
  • PaCO2
  • pH
  • Temperature
  • Glucose (hypoglycaemia)
Aortic glomus cells - in the aortic arch, subclavian arteries and pulmonary trunk
  • PaO2
  • Changes in O2 delivery (anaemia, carboxyhaemoglobin, hypotension)
  • PaCO2
Aortic nerve
(branch of the vagus)
Central chemoreceptors
  • pH
Mechanoreceptors in bronchial and lung tissue
  • Inflation and deflation (i.e. Hering-Breuer reflex)
Respiratory Control Centres
Controller Role Efferents and effectors
Nucleus retroambigualis Expiratory function

Upper motor neuron axons to contralateral expiratory muscles

Nucleus paraambigualis Inspiratory function

Upper motor neuron axons to contralateral inspiratory muscles

Nucleus ambiguous Airway dilator function

Vagus nerve: to (larynx, pharynx and muscularis uvulae)

Glossopharyngeus muscle to stylopharyngeus muscle

Pre-Bötzinger complex Respiratory pacemaker ("central pattern generator") Interneurons connecting to other respiratory control regions
Bötzinger complex Expiratory function

Inhibitory interneurons to phrenic motor neurons and other respiratory control regions

Pontine respiratory group

Integrates descending control of respiration from the CNS

Interneurons connecting to other respiratory control regions
Cerebral cortex Volitional and behavioural  respiratory control Pontine respiratory group


Wolff, Christopher B. "The physiological control of respiration." Molecular aspects of medicine 13.6 (1992): 445-567.

Henderson, V. E., and E. Horne Craigie. "On the respiratory centre." American Journal of Physiology-Legacy Content115.3 (1936): 520-529.

Remmers, John E. "A century of control of breathing." American journal of respiratory and critical care medicine172.1 (2005): 6-11.

 Richter, D. W., F. Heyde, and M. Gabriel. "Intracellular recordings from different types of medullary respiratory neurons of the cat." Journal of neurophysiology 38.5 (1975): 1162-1171.

López-Barneo, J., et al. "Carotid body oxygen sensing." European Respiratory Journal 32.5 (2008): 1386-1398.

Prabhakar, Nanduri R., and Ying-Jie Peng. "Peripheral chemoreceptors in health and disease." Journal of Applied Physiology 96.1 (2004): 359-366.

Atanasova, Dimitrinka Y., Michail E. Iliev, and Nikolai E. Lazarov. "Morphology of the rat carotid body." Biomedical Reviews 22 (2011): 41-55.

Ortega‐Sáenz, Patricia, et al. "Cellular properties and chemosensory responses of the human carotid body." The Journal of physiology 591.24 (2013): 6157-6173.

López-Barneo, José. "Oxygen sensing and stem cell activation in the hypoxic carotid body." Cell and tissue research 372.2 (2018): 417-425.

Nattie, Eugene. "Why do we have both peripheral and central chemoreceptors?." Journal of Applied Physiology 100.1 (2006): 9-10.

Smith, Curtis A., et al. "Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors." Journal of Applied Physiology 100.1 (2006): 13-19.

Lahiri, S., et al. "Relative responses of aortic body and carotid body chemoreceptors to carboxyhemoglobinemia." Journal of Applied Physiology 50.3 (1981): 580-586.

Lahiri, S., et al. "Relative responses of aortic body and carotid body chemoreceptors to hypotension." Journal of Applied Physiology 48.5 (1980): 781-788.

Prabhakar, Nanduri R. "O2 and CO2 detection by the carotid and aortic bodies." Chemosensory Transduction. Academic Press, 2016. 321-338.

Coleridge, Hazel, J. C. G. Coleridge, and A. Howe. "A search for pulmonary arterial chemoreceptors in the cat, with a comparison of the blood supply of the aortic bodies in the new‐born and adult animal." The Journal of physiology 191.2 (1967): 353-374.

Honda, Yoshiuki. "Respiratory and circulatory activities in carotid body-resected humans." Journal of Applied Physiology 73.1 (1992): 1-8.

Nattie, Eugene, and Aihua Li. "Central chemoreceptors: locations and functions.Comprehensive Physiology 2.1 (2011): 221-254.

Li, Aihua, Shawn Zhou, and Eugene Nattie. "Simultaneous inhibition of caudal medullary raphe and retrotrapezoid nucleus decreases breathing and the CO2 response in conscious rats.The Journal of physiology 577.1 (2006): 307-318.

Phillipson, ELIOT A., James Duffin, and Joel D. Cooper. "Critical dependence of respiratory rhythmicity on metabolic CO2 load." Journal of Applied Physiology 50.1 (1981): 45-54.

Wang, Wengang, Stefania Risso Bradley, and George B. Richerson. "Quantification of the response of rat medullary raphe neurones to independent changes in pHo and PCO2." The Journal of Physiology 540.3 (2002): 951-970.

Ullmann, Elisabeth. "The two original papers by Hering and Breuer submitted by Hering to the KK Akademie der Wissenschaften zu Wien in 1868." Ciba Foundation Symposium‐Breathing: Hering‐Breuer Centenary Symposium. Chichester, UK: John Wiley & Sons, Ltd., 1970

Tryfon, S., et al. "Hering-Breuer reflex in normal adults and in patients with chronic obstructive pulmonary disease and interstitial fibrosis." Respiration 68.2 (2001): 140-144.