Explain the mechanisms responsible for the cell resting membrane potential (60% of marks) and describe the Gibbs Donnan effect (40% of marks)
A good answer included a definition of the resting membrane potential and a clear description of
the factors that determine it. Explanation of these factors should have included a detailed
description of the selective permeability of the membrane, electrochemical gradients and active
transport mechanisms. Answers should demonstrate awareness of the Nernst equation and the
Goldman-Hodgkin-Katz equation. These were often confused, sometimes with the GibbsDonnan
effect. Descriptions of the Gibbs-Donnan effect generally lacked detail and
understanding. The better answers included a definition and discussed in detail the influence of
non-diffusible ions (intracellular proteins) on the distribution of diffusible ions.
a)
This is a topic which generally takes an entire book chapter to describe. What follows is an attempt to explain/describe the main concepts as briefly as possible while including the essential details.
Resting membrane potential: the voltage (charge) difference between the intracellular and extracellular fluid, when the cell is at rest (i.e not depolarised by an action potential).
Mechanisms responsible for the resting membrane potential:
Now, as for the Gibbs-Donnan effect:
Wright, Stephen H. "Generation of resting membrane potential." Advances in physiology education 28.4 (2004): 139-142.
Tasaki, I., A. Watanabe, and T. Takenaka. "Resting and action potential of intracellularly perfused squid giant axon." Proceedings of the National Academy of Sciences of the United States of America 48.7 (1962): 1177.
Lodish, Harvey, et al. "Intracellular ion environment and membrane electric potential." Molecular Cell Biology. 4th edition. WH Freeman, 2000.
Lesage, Florian, and Michel Lazdunski. "Molecular and functional properties of two-pore-domain potassium channels." American Journal of Physiology-Renal Physiology 279.5 (2000): F793-F801.
Ling, G. N., Zelling, Niu, and M. Ochsenfeld. "Predictions of polarized multilayer theory of solute distribution confirmed from a study of the equilibrium distribution in frog muscle of twenty-one nonelectrolytes including five cryoprotectants." Physiological chemistry and physics and medical NMR 25.3 (1993): 177-208.
Stanton, M. G. "Origin and magnitude of transmembrane resting potential in living cells." Philosophical Transactions of the Royal Society of London. B, Biological Sciences 301.1104 (1983): 85-141.
Sperelakis, Nicholas. "Origin of resting membrane potentials." Cell physiology source book. Academic Press, 1995. 67-90.
Donnan, Frederick George. "Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology." Journal of Membrane Science 100.1 (1995): 45-55.
Adair, G. S. "On the Donnan equilibrium and the equation of Gibbs." Science 58.1488 (1923): 13-13.
Donnan, Frederick George. "The theory of membrane equilibria." Chemical Reviews 1.1 (1924): 73-90.
Nguyen, Minhtri K., and Ira Kurtz. "Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration." Journal of Applied Physiology 100.4 (2006): 1293-1300.
Masuda, Takashi, Geoffrey P. Dobson, and Richard L. Veech. "The Gibbs-Donnan near-equilibrium system of heart." Journal of Biological Chemistry 265.33 (1990): 20321-20334.