It is a widely recognised fact that ICU doctors are going to spend much of their working life using ventilators, staring at their screens, making fine adjustments to them, talking about them, and generally appreciating them. One might describe the whole cohort of critical care specialists as the “Mechanical Ventilator Fancier’s Society”. It is therefore quite remarkable how little attention is paid to the exploration of these apparatus in the expectations of the formal training process. Judging by the 2017 CICM Primary Syllabus, college examiners expect absolutely nothing from their primary candidates in this cognitive territory. Then, after an unregulated gap in training, the Fellowship candidates find themselves in a position where this area is assumed knowledge, and are asked questions about pragmatic matters such as troubleshooting the circuit of the inexplicably breathless patient or interpreting abnormal waveforms.
One might, of course, make the argument that it is quite possible to be a safe and proficient user of a device without expert familiarity with its inner workings, pointing to the personal computer as an example. Moreover, because this topic has zero exam value, and the trainees’ time is finite, one might accuse the author of wasting valuable revision time with this self-indulgent gibberish. The counterargument is that an in-depth understanding of our instruments informs our use of them, and enriches our practice. To claim mastery of the field of Intensive Care Medicine should probably mean a claim to an understanding which goes somewhat beyond the pragmatic requirements of routine bedside work.
However, there’s something to be said for satisfying pragmatic requirements. To define what those might be, one could use the official CICM “Work-Based Competency Assessment: Ventilation”, which mentions that an “acceptable” trainee “describes the principle (sic) components of bellows and turbine ventilators”. In brief, the following components are usually seen in a modern mechanical ventilator:
Sources of power:
|
Monitoring
Safety features
|
This list is neither exhaustive (listing every valve and bolt) nor sufficiently broad to cover every possible variation on this theme. Rather, it was designed to cover the main components which one might find inside a normal ICU ventilator, a transport ventilator, or an anaesthesia ventilator. The specific functions of these components are discussed in greater detail in the subsequent chapters of this section. It would certainly be pointless to take this subject back to a time when “an average clinician could …completely disassemble and reassemble a mechanical ventilator as a training exercise or to perform repairs”, but some detail is probably warranted, given our reliance on these devices.
There are not many good peer-reviewed resources for the topic of ventilator design, but wherever one looks one finds an article by Robert L. Chatburn. For instance, much of this chapter is based on the excellent article by Chatburn & Branson (1992) which discusses an all-encompassing taxonomy to classify mechanical ventilator systems. Chatburn seems to have been writing about mechanical ventilation since 1982 and was invited to write the classification chapter for Tobin’s Principles and Practice of Mechanical Ventilation (p.45 - Chapter 2 of the 3rd Ed, 2012). He is also the co-author of Chapter 3 from the same book (“Basic Principles of Ventilator Design”, p. 65-95).
According to the definition offered by Chatburn, a mechanical ventilator is an automated machine in which
“...energy is transmitted or transformed (by the ventilator’s drive mechanism) in a predetermined manner (by the control circuit) to augment or replace the patient’s muscles in performing the work of breathing.”
This definition must be qualified by mentioning that the mechanical ventilator should be automated. The self-inflating bag-valve-mask resuscitator is a ventilator by the above definition, as the user’s muscle energy acts as a drive mechanism and is used to augment or replace the patient’s muscles. However, it would be plainly mad to consider that a mode of mechanical ventilation. Thus, a mechanical ventilator needs to be a device which you can set and walk away from, knowing that it will continue to safely perform its role.
Until surprisingly recently, people have been using variants of a classification system which has undergone little modification since the 1950s. William Mushin’s Automatic Ventilation of the Lungs (1959) was an early textbook of mechanical ventilation which is much referenced, and it was probably quite good in its time (contemporaries gushed that it “deserves to be closely studied by all anaesthetists” and “provides salutary reading for those who feel the urge to design, make or modify an apparatus of this kind”). Of course, it is well out of print, and given its vintage and irrelevance in the modern era, even a veteran software pirate would be entirely unable to track down an illegally scanned copy.
In short, mechanical ventilator classification systems have historically been so pointless and inadequate that Chatburn opened his 1991 article with a quote from Genesis (11:7), “Come, let us go down and there confuse their language, that they may not understand one another’s speech”. The more mature taxonomy offered by Chatburn is used here to classify ventilators according to the mechanisms and principles of their function. It omits such anachronisms as the inevitable discussion of positive and negative pressure ventilators (of course these days they are all positive pressure devices). The model is extensive, as it covers not only engineering aspects of mechanical ventilator design but also such detail as flow waveform shape and different possible alarm settings. It is reproduced here with minimal modification:
Input
Power conversion and transmission
Control scheme
|
Output
Alarms
|
Though it is useful later to classify modes of ventilation and make sense of the massive array of totally random-seeming ventilator nomenclature, for the purposes of this engineering-oriented chapter a classification like this is too broad. What the CICM trainee needs is something quick, to memorise and reproduce for the purposes of passing their ventilation WCA.
If one were to behold a ventilator with a critical eye, one would find that it is really composed only of four main parts:
The power source consists of something to supply the gas which will be delivered to the patient, as well as the energy required to run the ventilator components. Thus, this category encompasses the gas supply system, the batteries and power source for the mechanical ventilator.
The controls are some means of regulating the timing and characteristics of the delivered gas. These components consist of an entire array of parts, each of which probably merits an entire chapter of their own:
The monitors are means of sensing and presenting the characteristics of gas delivery so that one might be able to assess the ventilator’s performance (and probably also the patient’s condition).
The safety features are some devices and measures which ensure that the patient does not come to any additional harm from being ventilated (beyond the already brutal effects which are integral to the process). These consist of filters and alarms.
Chatburn, Robert L.; Branson R. "Classification of Mechanical Ventilators." Respiratory Care 37.9 (1992): 1009-1025
Chatburn, Robert L. "Classification of mechanical ventilators and modes of ventilation." Principles and practice of mechanical ventilation. 3rd ed. New York: McGraw-Hill (2012).
Kacmarek R., Chipman D.; “Basic Principles of Ventilator Machinery.” In Tobin MJ (ed): Principles and Practice of Mechanical Ventilation. New York, McGraw-Hill, 2006 (2nd Ed) p 53-96
Chatburn, R.L; Mireles-Cabodevila. E. “Basic principles of ventilator design.” In Tobin MJ (ed): Principles and Practice of Mechanical Ventilation. New York, McGraw-Hill, 2006 (3rd Ed) p.65-95
Mushin, William W., et al. Automatic ventilation of the lungs. ed. Blackwell Scientific Publications, Oxford and Edinburgh, 1969.
Chatburn, Robert L. "A new system for understanding mechanical ventilators." Respiratory care 36.10 (1991): 1123.
Chatburn, Robert L. "Fundamentals of mechanical ventilation." Cleveland Heights: Mandu Press Ltd (2003).
Branson RD, Hess DR, Chatburn RL. “Respiratory Care Equipment.” 2nd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1999.
MacIntyre, Neil. "Design Features of Modern Mechanical Ventilators." Clinics in chest medicine 37.4 (2016): 607-613.
Sinclair, Colin M., Muthu K. Thadsad, and Ian Barker. "Modern anaesthetic machines." Continuing Education in Anaesthesia, Critical Care & Pain 6.2 (2006): 75-78.
Thille, Arnaud W., et al. "A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators." Intensive care medicine 35.8 (2009): 1368-1376.