Otherwise known as azane, ammonia goes by the chemical formula NH3. It is an abundant natural gas with a filthy reek. If one were presented with an open tub of raw ammonia gas, one would be forced to conclude that one were in the presence of a large amount of urine. Or the decomposing carcass of a giant squid. The college have made it appear in several LFT interpretation SAQs:
As far as published sources go, there are several excellent sources:
The short-tempered ICU exam candidate will want to avoid having to read through an extensive tract of wank, and will instead demand a short summary of differentials. Here is one such summary, with items linked to relevant articles wherever possible:
Vascular and cardiac causes
Infections
Neoplasms
Drugs
|
Congenital causes
Autoimmune causes
Urinary and renal causes
Endocrine and Metabolic causes
|
Another method of arranging the differentials, according to the physiological mechanism:
Increased substrate for ammoniagenesis
Bypass of normal metabolism
|
Acquired urea cycle defects
Congenital urea cycle defects
Excess of exogenous ammonia
Reabsorption of excreted ammonia
|
Ammonia in the human body is a curious beast. It is one of the few ways we can incorporate atmospheric nitrogen into biological processes (and even that, indirectly). In brief, organisms which are incapable of nitrogen fixation rely on more capable organisms to supply them with ammonium (NH4). This is vitally important, as the amine NH2- group (and all the other nitrogen-contaning organic molecule components, for that matter) cannot come readily from atmospheric nitrogen. Humans imbibe ready-made nitrogen-contanining compounds, and in the course of the metabolism these compounds then release ammonia, which must be dealt with somehow.
A 1954 discussion of ammonia declares that ammonia has three main entry points into the human organism. Of these, gastrointestinal absorption of colonic ammonia seems to be the major source. Another source is the deamination of amino acids, which occurs in the course of numerous routine metabolic manipulations. Lastly, the renal tubule generates ammonia from glutamine in order to acidify urine, and this renal ammonia can leak out into the renal vein (but this contribution to systemic ammonia levels is fairly minor)
The bacterial denisens of the bowel create vast amounts of ammonia by action of amino-acid oxidase and urease. The process includes an all-star cast of colonic flora featuring E.coli, Proteus mirabilis, Bacteroides Clostridium Enterococcus and Klebsiella aerogenes. The substrate for these bacterial enzymes (one might guess from names alone) are raw amino acids and urea. The reaction takes place rapidly in an alkaline environment (for instance, when the bicarbonate-rich pancreatic secretions hit the small bowel) and slows as the pH decreases towards acidity. In this fashion, the alkaline environment of the gut in a patient with a gastric bypass tends to favour ammonia prodction. The presence of readily available non-amine metabolic substrate (such as lactulose) creates an environment where there is greater reproductive advantage to be gained from the fermentation of abundant sugars; thus simple sugars decrease intestinal ammonia production, and this is one of the reasons lactulose is beneficial for hepatic encephalopathy.
An amazingly detailed article from 1977 starts its ode to the urea cycle with a palaeontological digression:
"Urea biosynthesis developed as a survival mechanism when primitive animals made the transition from Devonian seas to a swampy terrestrial existence."
Indeed they did.
Question 14 from the second paper of 2012 asked the candidates to critically evaluate of serum ammonia as a pathology test in the critically ill patient. The following answer was concocted by the author to improve on the (brief and uninformative) college model answer.
The use of ammonia levels in critical care:
Hepatic encephalopathy is discussed in greater detail elsewhere.
Conway, Edward Joseph, and Robert Cooke. "Blood ammonia." Biochemical Journal 33.4 (1939): 457.
Shambaugh, G. E. "Urea biosynthesis I. The urea cycle and relationships to the citric acid cycle." The American journal of clinical nutrition 30.12 (1977): 2083-2087.
McDermott Jr, William V., Raymond D. Adams, and Athol G. Riddell. "Ammonia metabolism in man." Annals of surgery 140.4 (1954): 539.
Vince, Angela, et al. "Ammonia production by intestinal bacteria." Gut 14.3 (1973): 171-177.
Vince, Angela J., and Sigrid M. Burridge. "Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose." Journal of medical microbiology 13.2 (1980): 177-191.
Dohrenwend, Paul, and Richard D. Shih. "Glycine Induced Hyperammonemia After Bladder Rupture During Transurethral Resection of a Bladder Tumor." Journal of Medical Cases 4.4 (2013): 250-253.
Felipo, Vicente, and Roger F. Butterworth. "Neurobiology of ammonia." Progress in neurobiology 67.4 (2002): 259-279.
Hashim, Ibrahim A., and Jennifer A. Cuthbert. "Elevated ammonia concentrations: Potential for pre-analytical and analytical contributing factors." Clinical biochemistry 47.16 (2014): 233-236.
Clay, Alison S., and Bryan E. Hainline. "Hyperammonemia in the ICU." CHEST Journal 132.4 (2007): 1368-1378.
Weng, Te-I., Frank Fuh-Yuan Shih, and Wen-Jone Chen. "Unusual causes of hyperammonemia in the ED." The American journal of emergency medicine 22.2 (2004): 105-107.
Hawkes, N. D., et al. "Non-hepatic hyperammonaemia: an important, potentially reversible cause of encephalopathy." Postgraduate medical journal 77.913 (2001): 717-722.