Question 9 from the first paper of 2020 presented calcium channel blocker overdose as the main point of discussion, and Question 14 from the second paper of 2006 asked the candidates to compare beta blockers and calcium channel blockers in a "compare and contrast" table. An ideal resource for answering such a question can be found in DeWitt and Waksman's article from Toxicological reviews (2004) - they basically answer the college question for you. The cardinal differences in these two toxicological syndromes are discussed at the very end of this chapter, which otherwise mainly deals with calcium channel blockers on their own. Additional resources should include the LITFL CCC entry, which is clear and concise.
Some features are common to all CCBs.
The lethal ones are verapamil and diltiazem. The dihydropyridine blockers have little effect on the myocardium, and therefore their toxicity is usually limited to lowish blood pressure and constipation, which are rarely ICU-level problems. On the other hand, verapamil and diltiazem can actually stop your heart. The level of attention received by these drugs in this chapter reflects their importance in the mortality statistics. Additionally, both inhibit CYP3A, as well as P-glycoprotein-mediated drug transport into tissues. The consequence of this is an increased serum level of drugs such as cyclosporine and digoxin.
This one belongs to the phenylalkylamine class of CCBs, which makes it the most cardioselective of them all. The oral absorption is good, but your liver usually metabolises most of it (up to 80%) during the first pass, making only 20% or so bioavailable. Among the dozen or so metabolites, there is an active metabolite (norverapamil), but it has only about 20% of the pharmacological activity when compared to its parent compound. It has a short half life, and is therefore available as a slow-release preparation, which is terrible news in overdose because you end up with this huge bezoar of slowly dissolving verapimil trapped in some loop of your sluggish poisoned bowel.
This one belongs to the benzothiazepine class of CCBs, which places it about midway between verapimil and dihydropyridines in terms of its selectivity for vascular L-type calcium channels. Benzothiazepines and benzodiazepines differ only slightly in the construction of their seven-membered carbon ring structure (thiazepines have a sulfur atom and a nitrogen atom replacing two carbons in this ring, whereas diazepines have two nitrogens). Overdose with diltiazem is more likely to cause hypotension: it is a potent arteriodilator, and it still has enough cardiodepressant activity to completely abolish the compensatory tachycardia which would normally maintain blood pressure in response to vasodilation.
In Australia, nifedipine, amlodipine, felodipine and nimodipine are widely avaialble, with short acting intravenous clevedipine having recently become available. Therapeutic doses of these drugs tend to cause arterial vasodilation, with a modest drop in blood pressure which is counteracted by the vigorous cardiac compensatory response. Theoretically escalating the dose of these drugs towards toxicity should eventually result in cardiodepression, but practically the sympathetic response to dropping blood pressure overrides their effects on the myocardium.
Verapimil and Diltiazem | Dihydropyridines |
|
|
Common cardiovascular effects for all calcium channel blockers:
Metabolic effects:
Other extracirculatory effects
|
Given the similariites between calcium channel blocker and β-blocker toxidromes, one might expect similar therapies to be used for both.
Henry, Philip D. "Comparative pharmacology of calcium antagonists: nifedipine, verapamil and diltiazem." The American journal of cardiology 46.6 (1980): 1047-1058.
Doyon, Suzanne, and James R. Roberts. "The use of glucagon in a case of calcium channel blocker overdose." Annals of emergency medicine 22.7 (1993): 1229-1233.
Isbister, G. K. "Delayed asystolic cardiac arrest after diltiazem overdose; resuscitation with high dose intravenous calcium." Emergency medicine journal 19.4 (2002): 355-357.
Proano, Larry, William K. Chiang, and Richard Y. Wang. "Calcium channel blocker overdose." The American journal of emergency medicine 13.4 (1995): 444-450.
Engebretsen, Kristin M., et al. "High-dose insulin therapy in beta-blocker and calcium channel-blocker poisoning." Clinical toxicology 49.4 (2011).
Varpula, Tero, et al. "Treatment of serious calcium channel blocker overdose with levosimendan, a calcium sensitizer." Anesthesia & Analgesia 108.3 (2009): 790-792.
Frierson, John, et al. "Refractory cardiogenic shock and complete heart block after unsuspected verapamil‐sr and atenolol overdose." Clinical cardiology 14.11 (1991): 933-935.
Garg, Suneel K., et al. "Management of life-threatening calcium channel blocker overdose with continuous veno-venous hemodiafiltration with charcoal hemoperfusion." Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine 18.6 (2014): 399.
Doepker, Bruce, et al. "High-dose insulin and intravenous lipid emulsion therapy for cardiogenic shock induced by intentional calcium-channel blocker and beta-blocker overdose: a case series." The Journal of emergency medicine 46.4 (2014): 486-490.
Cave, Grant, and Martyn Harvey. "Intravenous lipid emulsion as antidote beyond local anesthetic toxicity: a systematic review." Academic Emergency Medicine 16.9 (2009): 815-824.