Haemoperfusion as a stand-alone topic has not been asked about in any previous fellowship SAQ papers. However, it had come up in the toxocology-related Question 19.1 from the first paper of 2009, which asked the candiates to "list the relevant physical features of hemodialysis and hemoperfusion filters" with specific reference to "intoxications". It is not inconceivable that this topic might come up again in a question which might go something like "List 10 drugs which are susceptible to clearance by haemoperfusion therapy", or "Decribe the mechanisms of haemoperfusion therapy, and discuss the complications of its use". Or something much worse.
The following brief summaries are based largely on the relevant chapters from the 2nd edition of Critical Care Nephrology by Ronco, Bellomo and Kellum.
Haemoperfusion is defined as "the extracorporeal procedure in which the anticoagulated patient’s blood passes through a volume of adsorbent material"
Adsorption is the deposition of molecules on the surface of a medium, rather than within it (which would be aBsorption).
The adsoprtion medium needs to have several favourable properies:
Relevant features to make note of :
The table presented here is modelled on the table representing the complications of renal replacement therapy in general. It was felt that haemoperfusion is sufficiently unique to merit its own table of complications; however many complications are shared by all RRT types. The better resource for this is a chapter by James Winchester from the textbook "Complications of Dialysis" which is available for free on Google Books.
Generic complications, common to all RRT |
Access complicationsAll RRT requires access of some sort. Be it fistula or vas cath, there are risks:
Haemolytic complicationsAll RRT filters tend to eat red cells, but with the haemoperfusion filters this issue is exaggerated. Haemolysis of some degree is to be expected. ThrombocytopeniaThe consumption of cellular blood components in the cartridge is significant, but the platelets are the most affected. Inflammatory reponseThe haemoperfusion membrane is a proinflammatory surface. Modern membranes are a massive improvement, but some inflammatory reaction (particularly complement activation) is to be expected. In addition to the proinflammatory effect of broken red blood cells, there is a risk of widespread inflammation due to cartridge embolism. Blood loss due to circuit lossIf a perfusion cartridge clots, the whole thing is discarded, just like any other dialysis circuit. The perfusion cartridge may be slightly larger, and so the blood loss may be slightly greater. HypothermiaThe drop in the core body temperature due to heat exchange via the circuit occurs via similar mechanisms. Just as in CVVHDF, one can be cooled by the haemoperfusion circuit. HypoxiaActivation of complement and the inflammatory mechanisms leads to an increase in the activity of nitric oxide synthase, which countracts the normal mechanisms of hypoxic pulmonary vasoconstriction. Increased shunt develops; therefore hypoxia ensues. Electrolyte disturbanceCharcoal does not tend to cause any sort of electrolyte changes, but the macroporous resins can remove calcium phosphate and potassium from the blood stream. Malnutrition due to adsoprtion of useful moleculesAdsorption of all lipophilic molecules occurs, and thus one ends up missing out on the fatty acids from TPN, fat-soluble vitamins A, D, E and K, or dietary cholesterol. Over the initial hour or so, glucose and calcium levels can drop (even with charcoal hemoperfusion). |
Unique complications, specific to haemoperfusion |
Haemodynamic instabilityThe hemodynamic instability due to haemoperfusion is wholely due to the generation of an inflammatory response due to an incompatible blood/adsorbent interface. The chances of this have been greatly reduced by the use of modern immunoneutral coatings. In comparison, much of the early interest in this technique was lost due to major haemodynamic complications. Particle embolisationAgain, this is mainly a complication of older, less "evolved" cartridges, where bits of the adsorbent would break off and embolise downstream. In modern cartridges this is almost unheard of. Toxin elutionCarbon in the cartridge, though a highly purified form, is still an organic product, and therefore prone to the usual peculiarities of natural materials. Weird hydrocarbons and potentially even toxic heavy metals may elute out of the cartridge and into the patient. Repeated treatments will therefore result in accumulation toxicity. This is largely a theoretical complication; as far as I am aware, such heavy metal elution has only ever been observed in vitro. |
Harbord et al. have a chapter on drug removal by extracorporeal techniques. That chapter within it contains several massive tables, listing all the possible and impossible drugs which can be removed by an extracorporeal circuit. The haemoperfusion-specific information resides in Table 174-2 on page 922.
The list is massive, and impossible to memorise. Instead, it is easier to remember basic features which discriminate between those drugs that are easily removed by dialysis and those that are easily removed by haemoperfusion.
|
|
Rafael Ponikvar, "Hemoperfusion" in: Critical Care Nephrology (2009) p.1535
Nikolas Harbord, Steven J. Gruber, Donald A. Feinfeld, and James Frank Winchester "Hemodialysis, Hemofiltration, and Hemoperfusion in Acute Intoxication and Poisoning" in: Critical Care Nephrology (2009) p.919
Gil, H-W., et al. "Clinical outcome of hemoperfusion in poisoned patients."Blood purification 30.2 (2010): 84-88.
Winchester, James F. "Complications of Hemoperfusion." In: Complications of Dialysis (2000): p.127.
Fennimore, J., J. C. Kolthammen, and S. M. Lang. "Evaluation of hemoperfusion systems: in-vitro methods related to performance and safety."Artificial Organs (1977). - this article is not available anywhere, even as an abstract!
Cruz, Dinna N., et al. "Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial." Jama 301.23 (2009): 2445-2452.